

MicroSplat
Writing custom modules

Overview
MicroSplat is an incredibly flexible terrain generation system, which can be extended

indefinitely with new features via new modules. The module system not only enabled this, but

helps keep code clean and features reasonably independent of each other, helping features

work in all combinations with minimal cross talk between features.

FeatureDescriptor

2

Every module has a C# class which inherits from FeatureDescriptor.

FeatureDescriptor contains a number of abstract and virtual functions which can be used to

inject your shader code into the shader, provide UI for the user, and serialize feature choices into

the keyword structure. To create a module, create a C# class in an editor folder which inherits

from FeatureDescriptor. You will want to open an existing module to compare code, but here’s

essentially how it all works.

First you will find a section of code which inserts a define into the build settings using

the MicroSplatDefines.InitDefine function. This makes it possible to conditionally compile code

when a module is installed.

Next you will find an enumeration usually called DefineFeatures, which contains a list of

shader keywords. For example, lets imagine we are doing a feature called radar ping, so we

might add a enum called _RADARPING. This will be defined in the shader code when radar ping

is enabled, so that the shader can

#if _RADARPING

 DoSomething()

#endif

Further down you will find a bool or enum value that’s used to store the state of that

option locally. The Pack() and Unpack() methods will serialize this for us:

// in Pack()

if (radarPing)

{

 features.Add(GetFeatureName(DefineFeature._RADARPING));

}

// in Unpack()

3

radarPing = HasFeature(keywords, DefineFeature._RADARPING);

Note that the HasFeature and GetFeatureName functions need to be copied into new

modules, as they cannot be included in the subclass since DefineFeatures is different for each

module.

To show the option to the user, the add a toggle to the DrawFeatureGUI function:

radarPing = EditorGUILayout.Toggle(“Radar Ping”, radarPing);

Adding Code and properties
Now that the user can toggle your feature on and off, it’s time to write some code. Often

it’s easier to store this in text files than to write the code in C#. MicroSplat will automatically

scan the project for text files starting with the string “microsplat_” and pass them to each

modules InitCompiler function. Here you can check the names and see if it’s one you need, and

assign them to local variables for easy printing into the shader later.

There are several functions in which you want to emit code:

WriteProperties

This function emits the property definitions for your material properties.

WritePerMaterialCBuffer

This function is for writing CBuffer data, which is an optimization on some platforms.

Essentially, you want all non-texture variables declarations output here (float4 _MyVariable, etc).

WriteFunctions

4

This function allows you to emit functions and texture declarations you will need. In

general, each feature simply calls a function from the main section of the shader. So we might

have some function like “void DoRadarPing(float3 worldPosition, half4 albedo)” that we write

here.

GUI
The material gui is handled in the DrawShaderGUI function. Note that the compiler may

be actively compiling a shader while the GUI is drawing, so before displaying a section of code,

use the mat.HasProperty function to make sure the material property exists before displaying

editor code. Additionally, the MicroSplatUtilities class has a DrawRollup function which can be

used to organize your modules properties under a rollout.

Other Stuff
The ComputeSampleCounts function should be filled out giving the user a rough idea of

how many texture samples your feature will add to the shader. The DrawPerTextureGUI function

can be used to draw per texture properties. Note that these also define a shader feature so that

they are compiled out when not in use, and are stored in a 32x32 color array and pushed to the

shader as a texture. Consult MicroSplatPropData for the layout and open slots. There are also

function to move your module up or down in the compile or display order.

Calling your code
Now that your functions, properties, and variables can be written into the shader, you

need to call your function from tha main shader. The easiest way is to insert some code into the

microsplat_terrain_body.txt which looks like so:

5

#if _RADARPING

 DoRadarPing(i.worldPos, albedo, normSAO);

#endif

However, you could also add a unique comment string to where your function needs to

be inserted and replace that in the modules OnPostGeneration function. This has the advantage

of not needing to change the core module when your function signature changes.

Shader Structure
The main files of the shader are the microsplat_terrain_body.txt file and

microsplat_shared.txt. You will find most structure definitions and common functions in the

shared file, and the actual shader layout in the terrain_body file.

In the terrain_body file, you will find functions for sampling each of the arrays. Below that

you will find a Sample function, which is the main flow of the shader. This function is passed the

following data:

Input

this is the input from the vertex to fragment shader, and contains things like the original

uvs, normal, world position, tangent space view direction (i.viewDir), etc.

Config

The config contains UV’s for each of the 4 texture sets which will be sampled. Note

these are float3’s with the third index being the texture index. There’s some additional

information there for texture clustering as well, and a TriplanarConfig when triplanar is

enabled.

6

MicroSplatLayer

The function returns the MicroSplatLayer, which is similar to structures like

SurfaceStandardOutput in Unity’s shader. It contains albedo, normal, etc.

This Sample function roughly does the following:

- Sample FX data (streams/lava)

- Setup UVs for each texture (per texture UV scale, etc)

- Setup sampling structs and cull low weighted textures (Setup function called)

- Sample various arrays (albedo/normal/etc) and setting up the RawSamples structures,

which contain the unmixed samples from the textures

- Apply per-texture based effects before samples are mixed

- Mix samples

- Apply effects to mixed samples (snow, etc)

- Return final albedo/normal/etc in MicroSplatLayer structure

For most modules this is all that needs to be modified. However, if your module interacts with

other features (like tessellation sampling, distance resampling, etc), it may need to have

additional code in other parts of the shader.

HDRP/URP
In most cases, support for HDRP/URP is automatic. However, not all surface shader

conventions are translated.

