Net.Like.Xue.Tokyo/Assets/Plugins/Animancer/Internal/Collections/KeyedList.cs

328 lines
14 KiB
C#

// Animancer // https://kybernetik.com.au/animancer // Copyright 2018-2023 Kybernetik //
using System;
using System.Collections;
using System.Collections.Generic;
namespace Animancer
{
/// <summary>Stores the index of an object in a <see cref="KeyedList{T}"/>.</summary>
/// https://kybernetik.com.au/animancer/api/Animancer/Key
///
public class Key : Key.IListItem
{
/************************************************************************************************************************/
/// <summary>An object with a <see cref="Animancer.Key"/> so it can be used in a <see cref="KeyedList{T}"/>.</summary>
/// <example>
/// It's usually easiest to just inherit from <see cref="Animancer.Key"/>, but otherwise the recommended
/// implementation looks like this:
/// <para></para><code>
/// class MyClass : Key.IListItem
/// {
/// Key Key.IListItem.Key { get; } = new Key();
/// // Don't use expression bodied ...Key => new... because that would create a new one every time.
/// }
/// </code></example>
/// https://kybernetik.com.au/animancer/api/Animancer/IListItem
///
public interface IListItem
{
/// <summary>
/// The <see cref="Animancer.Key"/> which stores the <see cref="KeyedList{T}"/> index of this object.
/// </summary>
Key Key { get; }
}
/************************************************************************************************************************/
/// <summary>The <see cref="_Index"/> which indicates that an item isn't in a list.</summary>
public const int NotInList = -1;
/// <summary>The current position of this key in the list.</summary>
private int _Index = -1;
/// <summary>Returns location of this object in the list (or <c>-1</c> if it is not currently in a keyed list).</summary>
public static int IndexOf(Key key) => key._Index;
/// <summary>Is the `key` currently in a keyed list?</summary>
public static bool IsInList(Key key) => key._Index != NotInList;
/************************************************************************************************************************/
/// <summary>A <see cref="Key"/> is its own <see cref="IListItem.Key"/>.</summary>
Key IListItem.Key => this;
/************************************************************************************************************************/
/// <summary>A <see cref="List{T}"/> which can remove items without needing to search the entire collection.</summary>
/// <remarks>
/// This implementation has several restrictions compared to a regular <see cref="List{T}"/>:
/// <list type="bullet">
/// <item>Items must implement <see cref="IListItem"/> or inherit from <see cref="Key"/>.</item>
/// <item>Items cannot be <c>null</c>.</item>
/// <item>Items can only be in one <see cref="KeyedList{T}"/> at a time and cannot appear multiple times in it.</item>
/// </list>
/// This class is nested inside <see cref="Key"/> so it can modify the private <see cref="_Index"/> without
/// exposing that capability to anything else.
/// </remarks>
/// https://kybernetik.com.au/animancer/api/Animancer/KeyedList_1
///
public class KeyedList<T> : IList<T>, ICollection where T : class, IListItem
{
/************************************************************************************************************************/
private const string
SingleUse = "Each item can only be used in one " + nameof(KeyedList<T>) + " at a time.",
NotFound = "The specified item does not exist in this " + nameof(KeyedList<T>) + ".";
/************************************************************************************************************************/
private readonly List<T> Items;
/************************************************************************************************************************/
/// <summary>Creates a new <see cref="KeyedList{T}"/> using the default <see cref="List{T}"/> constructor.</summary>
public KeyedList() => Items = new List<T>();
/// <summary>Creates a new <see cref="KeyedList{T}"/> with the specified initial `capacity`.</summary>
public KeyedList(int capacity) => Items = new List<T>(capacity);
// No copy constructor because the keys will not work if they are used in multiple lists at once.
/************************************************************************************************************************/
/// <summary>The number of items currently in the list.</summary>
public int Count => Items.Count;
/// <summary>The number of items that this list can contain before resizing is required.</summary>
public int Capacity
{
get => Items.Capacity;
set => Items.Capacity = value;
}
/************************************************************************************************************************/
/// <summary>The item at the specified `index`.</summary>
/// <exception cref="ArgumentException">The `value` was already in a keyed list (setter only).</exception>
public T this[int index]
{
get => Items[index];
set
{
var key = value.Key;
// Make sure it isn't already in a list.
if (key._Index != NotInList)
throw new ArgumentException(SingleUse);
// Remove the old item at that index.
Items[index].Key._Index = NotInList;
// Set the index of the new item and add it at that index.
key._Index = index;
Items[index] = value;
}
}
/************************************************************************************************************************/
/// <summary>Indicates whether the `item` is currently in this list.</summary>
public bool Contains(T item)
{
if (item == null)
return false;
var index = item.Key._Index;
return
(uint)index < (uint)Items.Count &&
Items[index] == item;
}
/************************************************************************************************************************/
/// <summary>Returns the index of the `item` in this list or <c>-1</c> if it is not in this list.</summary>
public int IndexOf(T item)
{
if (item == null)
return NotInList;
var index = item.Key._Index;
if ((uint)index < (uint)Items.Count &&
Items[index] == item)
return index;
else
return NotInList;
}
/************************************************************************************************************************/
/// <summary>Adds the `item` to the end of this list.</summary>
/// <exception cref="ArgumentException">The `item` was already in a keyed list.</exception>
public void Add(T item)
{
var key = item.Key;
// Make sure it isn't already in a list.
if (key._Index != NotInList)
throw new ArgumentException(SingleUse);
// Set the index of the new item and add it to the list.
key._Index = Items.Count;
Items.Add(item);
}
/// <summary>Adds the `item` to the end of this list if it wasn't already in it.</summary>
public void AddNew(T item)
{
if (!Contains(item))
Add(item);
}
/************************************************************************************************************************/
/// <summary>Adds the `item` to this list at the specified `index`.</summary>
public void Insert(int index, T item)
{
for (int i = index; i < Items.Count; i++)
Items[i].Key._Index++;
item.Key._Index = index;
Items.Insert(index, item);
}
/************************************************************************************************************************/
/// <summary>Removes the item at the specified `index`.</summary>
public void RemoveAt(int index)
{
// Adjust the indices of all items after the target.
for (int i = index + 1; i < Items.Count; i++)
Items[i].Key._Index--;
// Mark the key as removed and remove the item.
Items[index].Key._Index = NotInList;
Items.RemoveAt(index);
}
/// <summary>Removes the item at the specified `index` by swapping the last item in this list into its place.</summary>
/// <remarks>
/// This does not maintain the order of items, but is more efficient than <see cref="RemoveAt"/> because
/// it avoids the need to move every item after the target down one place.
/// </remarks>
public void RemoveAtSwap(int index)
{
// Mark the item as removed.
Items[index].Key._Index = NotInList;
// If it wasn't the last item, move the last item over it.
var lastIndex = Items.Count - 1;
if (lastIndex > index)
{
var lastItem = Items[lastIndex];
lastItem.Key._Index = index;
Items[index] = lastItem;
}
// Remove the last item from the list.
Items.RemoveAt(lastIndex);
}
/************************************************************************************************************************/
/// <summary>Removes the `item` from this list.</summary>
/// <exception cref="ArgumentException">The `item` is not in this list.</exception>
public bool Remove(T item)
{
var key = item.Key;
var index = key._Index;
// If it isn't in a list, do nothing.
if (index == NotInList)
return false;
// Make sure the item is actually in this list at the index it says.
// Otherwise it must be in a different list.
if (Items[index] != item)
throw new ArgumentException(NotFound, nameof(item));
// Remove the item.
RemoveAt(index);
return true;
}
/************************************************************************************************************************/
/// <summary>Removes the `item` by swapping the last item in this list into its place.</summary>
/// <remarks>
/// This does not maintain the order of items, but is more efficient than <see cref="Remove"/> because
/// it avoids the need to move every item after the target down one place.
/// </remarks>
/// <exception cref="ArgumentException">The `item` is not in this list.</exception>
public bool RemoveSwap(T item)
{
var key = item.Key;
var index = key._Index;
// If it isn't in a list, do nothing.
if (index == NotInList)
return false;
// Make sure the item is actually in this list at the index it says.
// Otherwise it must be in a different list.
if (Items[index] != item)
throw new ArgumentException(NotFound, nameof(item));
// Remove the item.
RemoveAtSwap(index);
return true;
}
/************************************************************************************************************************/
/// <summary>Removes all items from this list.</summary>
public void Clear()
{
for (int i = Items.Count - 1; i >= 0; i--)
Items[i].Key._Index = NotInList;
Items.Clear();
}
/************************************************************************************************************************/
/// <summary>Copies all the items from this list into the `array`, starting at the specified `index`.</summary>
public void CopyTo(T[] array, int index) => Items.CopyTo(array, index);
/// <summary>Copies all the items from this list into the `array`, starting at the specified `index`.</summary>
void ICollection.CopyTo(Array array, int index) => ((ICollection)Items).CopyTo(array, index);
/// <summary>Returns false.</summary>
bool ICollection<T>.IsReadOnly => false;
/// <summary>Returns an enumerator that iterates through this list.</summary>
public List<T>.Enumerator GetEnumerator() => Items.GetEnumerator();
/// <inheritdoc/>
IEnumerator<T> IEnumerable<T>.GetEnumerator() => GetEnumerator();
/// <inheritdoc/>
IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
/************************************************************************************************************************/
/// <summary>Is this list thread safe?</summary>
bool ICollection.IsSynchronized => ((ICollection)Items).IsSynchronized;
/// <summary>An object that can be used to synchronize access to this <see cref="ICollection"/>.</summary>
object ICollection.SyncRoot => ((ICollection)Items).SyncRoot;
/************************************************************************************************************************/
}
/************************************************************************************************************************/
}
}