Net.Like.Xue.Tokyo/Assets/BITKit/Core/kcp2k/highlevel/KcpPeer.cs

820 lines
36 KiB
C#

// Kcp Peer, similar to UDP Peer but wrapped with reliability, channels,
// timeouts, authentication, state, etc.
//
// still IO agnostic to work with udp, nonalloc, relays, native, etc.
using System;
using System.Diagnostics;
using System.Net.Sockets;
namespace kcp2k
{
enum KcpState { Connected, Authenticated, Disconnected }
public class KcpPeer
{
// kcp reliability algorithm
internal Kcp kcp;
// security cookie to prevent UDP spoofing.
// credits to IncludeSec for disclosing the issue.
//
// server passes the expected cookie to the client's KcpPeer.
// KcpPeer sends cookie to the connected client.
// KcpPeer only accepts packets which contain the cookie.
// => cookie can be a random number, but it needs to be cryptographically
// secure random that can't be easily predicted.
// => cookie can be hash(ip, port) BUT only if salted to be not predictable
readonly uint cookie;
// this is the cookie that the other end received during handshake.
// store byte[] representation to avoid runtime int->byte[] conversions.
internal readonly byte[] receivedCookie = new byte[4];
// IO agnostic
readonly Action<ArraySegment<byte>> RawSend;
// state: connected as soon as we create the peer.
// leftover from KcpConnection. remove it after refactoring later.
KcpState state = KcpState.Connected;
// events are readonly, set in constructor.
// this ensures they are always initialized when used.
// fixes https://github.com/MirrorNetworking/Mirror/issues/3337 and more
readonly Action OnAuthenticated;
readonly Action<ArraySegment<byte>, KcpChannel> OnData;
readonly Action OnDisconnected;
// error callback instead of logging.
// allows libraries to show popups etc.
// (string instead of Exception for ease of use and to avoid user panic)
readonly Action<ErrorCode, string> OnError;
// If we don't receive anything these many milliseconds
// then consider us disconnected
public const int DEFAULT_TIMEOUT = 10000;
public int timeout;
uint lastReceiveTime;
// internal time.
// StopWatch offers ElapsedMilliSeconds and should be more precise than
// Unity's time.deltaTime over long periods.
readonly Stopwatch watch = new Stopwatch();
// we need to subtract the channel and cookie bytes from every
// MaxMessageSize calculation.
// we also need to tell kcp to use MTU-1 to leave space for the byte.
const int CHANNEL_HEADER_SIZE = 1;
const int COOKIE_HEADER_SIZE = 4;
const int METADATA_SIZE = CHANNEL_HEADER_SIZE + COOKIE_HEADER_SIZE;
// reliable channel (= kcp) MaxMessageSize so the outside knows largest
// allowed message to send. the calculation in Send() is not obvious at
// all, so let's provide the helper here.
//
// kcp does fragmentation, so max message is way larger than MTU.
//
// -> runtime MTU changes are disabled: mss is always MTU_DEF-OVERHEAD
// -> Send() checks if fragment count < rcv_wnd, so we use rcv_wnd - 1.
// NOTE that original kcp has a bug where WND_RCV default is used
// instead of configured rcv_wnd, limiting max message size to 144 KB
// https://github.com/skywind3000/kcp/pull/291
// we fixed this in kcp2k.
// -> we add 1 byte KcpHeader enum to each message, so -1
//
// IMPORTANT: max message is MTU * rcv_wnd, in other words it completely
// fills the receive window! due to head of line blocking,
// all other messages have to wait while a maxed size message
// is being delivered.
// => in other words, DO NOT use max size all the time like
// for batching.
// => sending UNRELIABLE max message size most of the time is
// best for performance (use that one for batching!)
static int ReliableMaxMessageSize_Unconstrained(int mtu, uint rcv_wnd) =>
(mtu - Kcp.OVERHEAD - METADATA_SIZE) * ((int)rcv_wnd - 1) - 1;
// kcp encodes 'frg' as 1 byte.
// max message size can only ever allow up to 255 fragments.
// WND_RCV gives 127 fragments.
// WND_RCV * 2 gives 255 fragments.
// so we can limit max message size by limiting rcv_wnd parameter.
public static int ReliableMaxMessageSize(int mtu, uint rcv_wnd) =>
ReliableMaxMessageSize_Unconstrained(mtu, Math.Min(rcv_wnd, Kcp.FRG_MAX));
// unreliable max message size is simply MTU - channel header size
public static int UnreliableMaxMessageSize(int mtu) =>
mtu - METADATA_SIZE;
// buffer to receive kcp's processed messages (avoids allocations).
// IMPORTANT: this is for KCP messages. so it needs to be of size:
// 1 byte header + MaxMessageSize content
readonly byte[] kcpMessageBuffer;// = new byte[1 + ReliableMaxMessageSize];
// send buffer for handing user messages to kcp for processing.
// (avoids allocations).
// IMPORTANT: needs to be of size:
// 1 byte header + MaxMessageSize content
readonly byte[] kcpSendBuffer;// = new byte[1 + ReliableMaxMessageSize];
// raw send buffer is exactly MTU.
readonly byte[] rawSendBuffer;
// send a ping occasionally so we don't time out on the other end.
// for example, creating a character in an MMO could easily take a
// minute of no data being sent. which doesn't mean we want to time out.
// same goes for slow paced card games etc.
public const int PING_INTERVAL = 1000;
uint lastPingTime;
// if we send more than kcp can handle, we will get ever growing
// send/recv buffers and queues and minutes of latency.
// => if a connection can't keep up, it should be disconnected instead
// to protect the server under heavy load, and because there is no
// point in growing to gigabytes of memory or minutes of latency!
// => 2k isn't enough. we reach 2k when spawning 4k monsters at once
// easily, but it does recover over time.
// => 10k seems safe.
//
// note: we have a ChokeConnectionAutoDisconnects test for this too!
internal const int QueueDisconnectThreshold = 10000;
// getters for queue and buffer counts, used for debug info
public int SendQueueCount => kcp.snd_queue.Count;
public int ReceiveQueueCount => kcp.rcv_queue.Count;
public int SendBufferCount => kcp.snd_buf.Count;
public int ReceiveBufferCount => kcp.rcv_buf.Count;
// maximum send rate per second can be calculated from kcp parameters
// source: https://translate.google.com/translate?sl=auto&tl=en&u=https://wetest.qq.com/lab/view/391.html
//
// KCP can send/receive a maximum of WND*MTU per interval.
// multiple by 1000ms / interval to get the per-second rate.
//
// example:
// WND(32) * MTU(1400) = 43.75KB
// => 43.75KB * 1000 / INTERVAL(10) = 4375KB/s
//
// returns bytes/second!
public uint MaxSendRate => kcp.snd_wnd * kcp.mtu * 1000 / kcp.interval;
public uint MaxReceiveRate => kcp.rcv_wnd * kcp.mtu * 1000 / kcp.interval;
// calculate max message sizes based on mtu and wnd only once
public readonly int unreliableMax;
public readonly int reliableMax;
// SetupKcp creates and configures a new KCP instance.
// => useful to start from a fresh state every time the client connects
// => NoDelay, interval, wnd size are the most important configurations.
// let's force require the parameters so we don't forget it anywhere.
public KcpPeer(
Action<ArraySegment<byte>> output,
Action OnAuthenticated,
Action<ArraySegment<byte>, KcpChannel> OnData,
Action OnDisconnected,
Action<ErrorCode, string> OnError,
KcpConfig config,
uint cookie)
{
// initialize callbacks first to ensure they can be used safely.
this.OnAuthenticated = OnAuthenticated;
this.OnData = OnData;
this.OnDisconnected = OnDisconnected;
this.OnError = OnError;
this.RawSend = output;
// set up kcp over reliable channel (that's what kcp is for)
kcp = new Kcp(0, RawSendReliable);
// security cookie
this.cookie = cookie;
// set nodelay.
// note that kcp uses 'nocwnd' internally so we negate the parameter
kcp.SetNoDelay(config.NoDelay ? 1u : 0u, config.Interval, config.FastResend, !config.CongestionWindow);
kcp.SetWindowSize(config.SendWindowSize, config.ReceiveWindowSize);
// IMPORTANT: high level needs to add 1 channel byte to each raw
// message. so while Kcp.MTU_DEF is perfect, we actually need to
// tell kcp to use MTU-1 so we can still put the header into the
// message afterwards.
kcp.SetMtu((uint)config.Mtu - METADATA_SIZE);
// create mtu sized send buffer
rawSendBuffer = new byte[config.Mtu];
// calculate max message sizes once
unreliableMax = UnreliableMaxMessageSize(config.Mtu);
reliableMax = ReliableMaxMessageSize(config.Mtu, config.ReceiveWindowSize);
// set maximum retransmits (aka dead_link)
kcp.dead_link = config.MaxRetransmits;
// create message buffers AFTER window size is set
// see comments on buffer definition for the "+1" part
kcpMessageBuffer = new byte[1 + reliableMax];
kcpSendBuffer = new byte[1 + reliableMax];
timeout = config.Timeout;
watch.Start();
}
void HandleTimeout(uint time)
{
// note: we are also sending a ping regularly, so timeout should
// only ever happen if the connection is truly gone.
if (time >= lastReceiveTime + timeout)
{
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.Timeout, $"KcpPeer: Connection timed out after not receiving any message for {timeout}ms. Disconnecting.");
Disconnect();
}
}
void HandleDeadLink()
{
// kcp has 'dead_link' detection. might as well use it.
if (kcp.state == -1)
{
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.Timeout, $"KcpPeer: dead_link detected: a message was retransmitted {kcp.dead_link} times without ack. Disconnecting.");
Disconnect();
}
}
// send a ping occasionally in order to not time out on the other end.
void HandlePing(uint time)
{
// enough time elapsed since last ping?
if (time >= lastPingTime + PING_INTERVAL)
{
// ping again and reset time
//Log.Debug("KCP: sending ping...");
SendPing();
lastPingTime = time;
}
}
void HandleChoked()
{
// disconnect connections that can't process the load.
// see QueueSizeDisconnect comments.
// => include all of kcp's buffers and the unreliable queue!
int total = kcp.rcv_queue.Count + kcp.snd_queue.Count +
kcp.rcv_buf.Count + kcp.snd_buf.Count;
if (total >= QueueDisconnectThreshold)
{
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.Congestion,
$"KcpPeer: disconnecting connection because it can't process data fast enough.\n" +
$"Queue total {total}>{QueueDisconnectThreshold}. rcv_queue={kcp.rcv_queue.Count} snd_queue={kcp.snd_queue.Count} rcv_buf={kcp.rcv_buf.Count} snd_buf={kcp.snd_buf.Count}\n" +
$"* Try to Enable NoDelay, decrease INTERVAL, disable Congestion Window (= enable NOCWND!), increase SEND/RECV WINDOW or compress data.\n" +
$"* Or perhaps the network is simply too slow on our end, or on the other end.");
// let's clear all pending sends before disconnting with 'Bye'.
// otherwise a single Flush in Disconnect() won't be enough to
// flush thousands of messages to finally deliver 'Bye'.
// this is just faster and more robust.
kcp.snd_queue.Clear();
Disconnect();
}
}
// reads the next reliable message type & content from kcp.
// -> to avoid buffering, unreliable messages call OnData directly.
bool ReceiveNextReliable(out KcpHeader header, out ArraySegment<byte> message)
{
message = default;
header = KcpHeader.Disconnect;
int msgSize = kcp.PeekSize();
if (msgSize <= 0) return false;
// only allow receiving up to buffer sized messages.
// otherwise we would get BlockCopy ArgumentException anyway.
if (msgSize > kcpMessageBuffer.Length)
{
// we don't allow sending messages > Max, so this must be an
// attacker. let's disconnect to avoid allocation attacks etc.
// pass error to user callback. no need to log it manually.
OnError(ErrorCode.InvalidReceive, $"KcpPeer: possible allocation attack for msgSize {msgSize} > buffer {kcpMessageBuffer.Length}. Disconnecting the connection.");
Disconnect();
return false;
}
// receive from kcp
int received = kcp.Receive(kcpMessageBuffer, msgSize);
if (received < 0)
{
// if receive failed, close everything
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.InvalidReceive, $"KcpPeer: Receive failed with error={received}. closing connection.");
Disconnect();
return false;
}
// extract header & content without header
header = (KcpHeader)kcpMessageBuffer[0];
message = new ArraySegment<byte>(kcpMessageBuffer, 1, msgSize - 1);
lastReceiveTime = (uint)watch.ElapsedMilliseconds;
return true;
}
void TickIncoming_Connected(uint time)
{
// detect common events & ping
HandleTimeout(time);
HandleDeadLink();
HandlePing(time);
HandleChoked();
// any reliable kcp message received?
if (ReceiveNextReliable(out KcpHeader header, out ArraySegment<byte> message))
{
// message type FSM. no default so we never miss a case.
switch (header)
{
case KcpHeader.Handshake:
{
// we were waiting for a handshake.
// it proves that the other end speaks our protocol.
// parse the cookie
if (message.Count != 4)
{
// pass error to user callback. no need to log it manually.
OnError(ErrorCode.InvalidReceive, $"KcpPeer: received invalid handshake message with size {message.Count} != 4. Disconnecting the connection.");
Disconnect();
return;
}
// store the cookie bytes to avoid int->byte[] conversions when sending.
// still convert to uint once, just for prettier logging.
Buffer.BlockCopy(message.Array, message.Offset, receivedCookie, 0, 4);
uint prettyCookie = BitConverter.ToUInt32(message.Array, message.Offset);
Log.Info($"KcpPeer: received handshake with cookie={prettyCookie}");
state = KcpState.Authenticated;
OnAuthenticated?.Invoke();
break;
}
case KcpHeader.Ping:
{
// ping keeps kcp from timing out. do nothing.
break;
}
case KcpHeader.Data:
case KcpHeader.Disconnect:
{
// everything else is not allowed during handshake!
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.InvalidReceive, $"KcpPeer: received invalid header {header} while Connected. Disconnecting the connection.");
Disconnect();
break;
}
}
}
}
void TickIncoming_Authenticated(uint time)
{
// detect common events & ping
HandleTimeout(time);
HandleDeadLink();
HandlePing(time);
HandleChoked();
// process all received messages
while (ReceiveNextReliable(out KcpHeader header, out ArraySegment<byte> message))
{
// message type FSM. no default so we never miss a case.
switch (header)
{
case KcpHeader.Handshake:
{
// should never receive another handshake after auth
// GetType() shows Server/ClientConn instead of just Connection.
Log.Warning($"KcpPeer: received invalid header {header} while Authenticated. Disconnecting the connection.");
Disconnect();
break;
}
case KcpHeader.Data:
{
// call OnData IF the message contained actual data
if (message.Count > 0)
{
//Log.Warning($"Kcp recv msg: {BitConverter.ToString(message.Array, message.Offset, message.Count)}");
OnData?.Invoke(message, KcpChannel.Reliable);
}
// empty data = attacker, or something went wrong
else
{
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.InvalidReceive, $"KcpPeer: received empty Data message while Authenticated. Disconnecting the connection.");
Disconnect();
}
break;
}
case KcpHeader.Ping:
{
// ping keeps kcp from timing out. do nothing.
break;
}
case KcpHeader.Disconnect:
{
// disconnect might happen
// GetType() shows Server/ClientConn instead of just Connection.
Log.Info($"KcpPeer: received disconnect message");
Disconnect();
break;
}
}
}
}
public void TickIncoming()
{
uint time = (uint)watch.ElapsedMilliseconds;
try
{
switch (state)
{
case KcpState.Connected:
{
TickIncoming_Connected(time);
break;
}
case KcpState.Authenticated:
{
TickIncoming_Authenticated(time);
break;
}
case KcpState.Disconnected:
{
// do nothing while disconnected
break;
}
}
}
// TODO KcpConnection is IO agnostic. move this to outside later.
catch (SocketException exception)
{
// this is ok, the connection was closed
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.ConnectionClosed, $"KcpPeer: Disconnecting because {exception}. This is fine.");
Disconnect();
}
catch (ObjectDisposedException exception)
{
// fine, socket was closed
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.ConnectionClosed, $"KcpPeer: Disconnecting because {exception}. This is fine.");
Disconnect();
}
catch (Exception exception)
{
// unexpected
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.Unexpected, $"KcpPeer: unexpected Exception: {exception}");
Disconnect();
}
}
public void TickOutgoing()
{
uint time = (uint)watch.ElapsedMilliseconds;
try
{
switch (state)
{
case KcpState.Connected:
case KcpState.Authenticated:
{
// update flushes out messages
kcp.Update(time);
break;
}
case KcpState.Disconnected:
{
// do nothing while disconnected
break;
}
}
}
// TODO KcpConnection is IO agnostic. move this to outside later.
catch (SocketException exception)
{
// this is ok, the connection was closed
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.ConnectionClosed, $"KcpPeer: Disconnecting because {exception}. This is fine.");
Disconnect();
}
catch (ObjectDisposedException exception)
{
// fine, socket was closed
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.ConnectionClosed, $"KcpPeer: Disconnecting because {exception}. This is fine.");
Disconnect();
}
catch (Exception exception)
{
// unexpected
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.Unexpected, $"KcpPeer: unexpected exception: {exception}");
Disconnect();
}
}
void OnRawInputReliable(ArraySegment<byte> message)
{
// input into kcp, but skip channel byte
int input = kcp.Input(message.Array, message.Offset, message.Count);
if (input != 0)
{
// GetType() shows Server/ClientConn instead of just Connection.
Log.Warning($"KcpPeer: Input failed with error={input} for buffer with length={message.Count - 1}");
}
}
void OnRawInputUnreliable(ArraySegment<byte> message)
{
// ideally we would queue all unreliable messages and
// then process them in ReceiveNext() together with the
// reliable messages, but:
// -> queues/allocations/pools are slow and complex.
// -> DOTSNET 10k is actually slower if we use pooled
// unreliable messages for transform messages.
//
// DOTSNET 10k benchmark:
// reliable-only: 170 FPS
// unreliable queued: 130-150 FPS
// unreliable direct: 183 FPS(!)
//
// DOTSNET 50k benchmark:
// reliable-only: FAILS (queues keep growing)
// unreliable direct: 18-22 FPS(!)
//
// -> all unreliable messages are DATA messages anyway.
// -> let's skip the magic and call OnData directly if
// the current state allows it.
if (state == KcpState.Authenticated)
{
OnData?.Invoke(message, KcpChannel.Unreliable);
// set last receive time to avoid timeout.
// -> we do this in ANY case even if not enabled.
// a message is a message.
// -> we set last receive time for both reliable and
// unreliable messages. both count.
// otherwise a connection might time out even
// though unreliable were received, but no
// reliable was received.
lastReceiveTime = (uint)watch.ElapsedMilliseconds;
}
else
{
// it's common to receive unreliable messages before being
// authenticated, for example:
// - random internet noise
// - game server may send an unreliable message after authenticating,
// and the unreliable message arrives on the client before the
// 'auth_ok' message. this can be avoided by sending a final
// 'ready' message after being authenticated, but this would
// add another 'round trip time' of latency to the handshake.
//
// it's best to simply ignore invalid unreliable messages here.
// Log.Info($"KcpPeer: received unreliable message while not authenticated.");
}
}
// insert raw IO. usually from socket.Receive.
// offset is useful for relays, where we may parse a header and then
// feed the rest to kcp.
public void RawInput(ArraySegment<byte> segment)
{
// ensure valid size: at least 1 byte for channel + 4 bytes for cookie
if (segment.Count <= 5) return;
// parse channel
// byte channel = segment[0]; ArraySegment[i] isn't supported in some older Unity Mono versions
byte channel = segment.Array[segment.Offset + 0];
// parse cookie
uint messageCookie = BitConverter.ToUInt32(segment.Array, segment.Offset + 1);
// compare cookie to protect against UDP spoofing.
// messages won't have a cookie until after handshake.
// so only compare if we are authenticated.
// simply drop the message if the cookie doesn't match.
if (state == KcpState.Authenticated && messageCookie != cookie)
{
Log.Warning($"KcpPeer: dropped message with invalid cookie: {messageCookie} expected: {cookie}.");
return;
}
// parse message
ArraySegment<byte> message = new ArraySegment<byte>(segment.Array, segment.Offset + 1+4, segment.Count - 1-4);
switch (channel)
{
case (byte)KcpChannel.Reliable:
{
OnRawInputReliable(message);
break;
}
case (byte)KcpChannel.Unreliable:
{
OnRawInputUnreliable(message);
break;
}
default:
{
// invalid channel indicates random internet noise.
// servers may receive random UDP data.
// just ignore it, but log for easier debugging.
Log.Warning($"KcpPeer: invalid channel header: {channel}, likely internet noise");
break;
}
}
}
// raw send called by kcp
void RawSendReliable(byte[] data, int length)
{
// write channel header
// from 0, with 1 byte
rawSendBuffer[0] = (byte)KcpChannel.Reliable;
// write handshake cookie to protect against UDP spoofing.
// from 1, with 4 bytes
Buffer.BlockCopy(receivedCookie, 0, rawSendBuffer, 1, 4);
// write data
// from 5, with N bytes
Buffer.BlockCopy(data, 0, rawSendBuffer, 1+4, length);
// IO send
ArraySegment<byte> segment = new ArraySegment<byte>(rawSendBuffer, 0, length + 1+4);
RawSend(segment);
}
void SendReliable(KcpHeader header, ArraySegment<byte> content)
{
// 1 byte header + content needs to fit into send buffer
if (1 + content.Count > kcpSendBuffer.Length) // TODO
{
// otherwise content is larger than MaxMessageSize. let user know!
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.InvalidSend, $"KcpPeer: Failed to send reliable message of size {content.Count} because it's larger than ReliableMaxMessageSize={reliableMax}");
return;
}
// write channel header
kcpSendBuffer[0] = (byte)header;
// write data (if any)
if (content.Count > 0)
Buffer.BlockCopy(content.Array, content.Offset, kcpSendBuffer, 1, content.Count);
// send to kcp for processing
int sent = kcp.Send(kcpSendBuffer, 0, 1 + content.Count);
if (sent < 0)
{
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.InvalidSend, $"KcpPeer: Send failed with error={sent} for content with length={content.Count}");
}
}
void SendUnreliable(ArraySegment<byte> message)
{
// message size needs to be <= unreliable max size
if (message.Count > unreliableMax)
{
// otherwise content is larger than MaxMessageSize. let user know!
// GetType() shows Server/ClientConn instead of just Connection.
Log.Error($"KcpPeer: Failed to send unreliable message of size {message.Count} because it's larger than UnreliableMaxMessageSize={unreliableMax}");
return;
}
// write channel header
// from 0, with 1 byte
rawSendBuffer[0] = (byte)KcpChannel.Unreliable;
// write handshake cookie to protect against UDP spoofing.
// from 1, with 4 bytes
Buffer.BlockCopy(receivedCookie, 0, rawSendBuffer, 1, 4);
// write data
// from 5, with N bytes
Buffer.BlockCopy(message.Array, message.Offset, rawSendBuffer, 1 + 4, message.Count);
// IO send
ArraySegment<byte> segment = new ArraySegment<byte>(rawSendBuffer, 0, message.Count + 1 + 4);
RawSend(segment);
}
// server & client need to send handshake at different times, so we need
// to expose the function.
// * client should send it immediately.
// * server should send it as reply to client's handshake, not before
// (server should not reply to random internet messages with handshake)
// => handshake info needs to be delivered, so it goes over reliable.
public void SendHandshake()
{
// server includes a random cookie in handshake.
// client is expected to include in every message.
// this avoid UDP spoofing.
// KcpPeer simply always sends a cookie.
// in case client -> server cookies are ever implemented, etc.
// TODO nonalloc
byte[] cookieBytes = BitConverter.GetBytes(cookie);
// GetType() shows Server/ClientConn instead of just Connection.
Log.Info($"KcpPeer: sending Handshake to other end with cookie={cookie}!");
SendReliable(KcpHeader.Handshake, new ArraySegment<byte>(cookieBytes));
}
public void SendData(ArraySegment<byte> data, KcpChannel channel)
{
// sending empty segments is not allowed.
// nobody should ever try to send empty data.
// it means that something went wrong, e.g. in Mirror/DOTSNET.
// let's make it obvious so it's easy to debug.
if (data.Count == 0)
{
// pass error to user callback. no need to log it manually.
// GetType() shows Server/ClientConn instead of just Connection.
OnError(ErrorCode.InvalidSend, $"KcpPeer: tried sending empty message. This should never happen. Disconnecting.");
Disconnect();
return;
}
switch (channel)
{
case KcpChannel.Reliable:
SendReliable(KcpHeader.Data, data);
break;
case KcpChannel.Unreliable:
SendUnreliable(data);
break;
}
}
// ping goes through kcp to keep it from timing out, so it goes over the
// reliable channel.
void SendPing() => SendReliable(KcpHeader.Ping, default);
// disconnect info needs to be delivered, so it goes over reliable
void SendDisconnect() => SendReliable(KcpHeader.Disconnect, default);
// disconnect this connection
public void Disconnect()
{
// only if not disconnected yet
if (state == KcpState.Disconnected)
return;
// send a disconnect message
try
{
SendDisconnect();
kcp.Flush();
}
// TODO KcpConnection is IO agnostic. move this to outside later.
catch (SocketException)
{
// this is ok, the connection was already closed
}
catch (ObjectDisposedException)
{
// this is normal when we stop the server
// the socket is stopped so we can't send anything anymore
// to the clients
// the clients will eventually timeout and realize they
// were disconnected
}
// set as Disconnected, call event
// GetType() shows Server/ClientConn instead of just Connection.
Log.Info($"KcpPeer: Disconnected.");
state = KcpState.Disconnected;
OnDisconnected?.Invoke();
}
}
}