Thank you for purchasing the Motion Warping!

Here is what you need to do now:

Join our Discord and get a verified role [LINK HERE].

Pull the demo project from the GitHub repository [LINK HERE].
Import the asset via a Package Manager.

Visit the official documentation GitBook page [LINK HERE].

powbd -~

This document contains a quick step-by-step guide on how to use the Motion
Warping plugin in your project.


https://discord.gg/kinemation-1027338787958816860
https://github.com/kinemation/motion-warping
https://kinemation.gitbook.io/motion-warping-for-unity/

How this asset works
How does it warp the motion?

Our plugin uses 4 concepts in order to properly adjust character animation in realtime:

#warping-phases
#play-rate-scale
#total-root-motion

#post-animation-update

Warping Phases

Warping Phases are segments of the animation, where we want to perfrorm warping. In our plugin,
these are purple draggable windows found in the Motion Warping Asset:

Generate Phases Extract Curves

Vaulting animation example.

The example above is a vaulting animation that has 3 warping windows. But why 3? The amount of
warping windows depends on the number of the target points we are going to provide. To vault over
an object, we must know:

Front obstacle edge point
Rear obstacle edge point

Landing point

This makes it 3 warping points, which gives us 3 animation segments.



i Another example: climbing animation - we only need a single warp phase, because we want to go from
the current character position to the obstacle top point.

Warping Phases also contain useful information about the animation segment, such as:

Target point position and rotation offset
Segment playrate controls

Segment start and end time

T and R Offsets are used to offset the target point of the segment. This is super useful, since the
system will always align the character root with the target point. You can also use this to fix awkward

poses, caused by the original animation.

Min and Max playrate define the play rate limitations. And you will find out more about play rate in

the next chapter.

Play Rate Scale

When warping animations, we might run into a situation when the obstacle is simply too long. If we
keep the play rate the same, it will look strange, as if the character has an insane momentum.

To fix this, our plugin scales the playrate for the current animation phase. This is done by computing

the vector length difference.

i Example: if the obstacle is 1m away, and our animation was made for a 0.5m obstacle, the play rate will be
scaled down twice: from 1 to 0.5. If it was 0.25m away, the play rate will be increased from 1to 2.

You can adjust the play rate for any segment manually by editing the respective values:

The play rate is finally applied in the Animator Controller via a float parameter:



ClimbHigh

Multiplier

ClimbLow

HardLanding

JumnVault

If you have a custom animation system, you will need to find a way to manually plug in the adjusted
play rate value.

Total Root Motion

Every Warping Phase contains accumulated root motion for each translation axis.

v Tip: the total root motion is refreshed when you re-open the motion warping asset.

But why is it important? This feature is used to preserve the original motion. This is crucial for proper
warping, and you will find out more in the next chapter.



Post-Animation Update

Animations are warped in the LateUpdate() , right after the Animator update. This allows to
completely take over the character root motion, and preserve the previously applied IK and

constraints.

In order to warp the motion, we must know the difference between original animation and the desired

target point. Let's use a climbing animation curve as an example:

Climbing animation curve

This curve offsets the character vertical position by ~3 meters. The Total Root Motion will be ~3, as

it's the final offset.

In runtime, when our animation is playing, the system will acumulate animation translation deltas, and
divide them by the Total Root Motion.

In runtime, when our animation is playing, the system will acumulate animation translation deltas, and
divide them by the Total Root Motion.

v Example: let's say our animation was made for climbing a 3 meter obstacle. The object we want to climb is
6 meters, and we desire to warp. The height delta is 3 meters, so we need to add it to the current root
motion, using total root motion:

Formula: offset = desiredHeightDelta * accumulatedRootMotion / totalRootMotion,

where (accumulatedRootMotion / totalRootMotion) is in range [0;1] and acts as an alpha or weight.

After that, Motion Warping will apply the offset to the current position.

i Note: rotation warping is slightly different. Instead of using Total Root Motion, rotations are simply
SLERP'ed based on the current Warp Phase normalized time:

rotation = Quaternion.Slerp(startRotation, targetRotation, normalizedTime).



Step 1: Create a Motion Warping Asset

First, we need to create a data asset, which will configure the warping for our animation. To create
a new asset: Right click 2 Create & MotionWarping - MotionWarpingAsset.

e @t

Open

Motion Warping Pose Preview Animation Settings

Animati

Now you need to select your animation. Let's use JumpOver animation as an example. Once you've
chosen your clip, hit the Extract Curves button.

Animation
Animation

Now it's time to mark parts of the animation we want to warp. Specify the amount Phases Amount
- this value depends on desired target points.

@ Example: JumpOver animation this value is 3, because we have 3 target points: close
edge, far edge and landing point.



After that, hit the Generate Phases button:

Warp Pl

Generate Phases Extract Curves

These 3 purple segments mark parts of the animation, which will be used for warping. You can
resize and drag these areas. Also, you can preview the animation right in the editor:

Warp Phases

Generate Phases Extract Cur

VaultingA
>

0:00 (000. Frame O




If you open up the Warp Phases list you will see the details for each phase:

o T Offset: translation offset for the target point.

e R Offset: rotation offset for the target point.

e Start Time: animation start time for this segment.
e End Time: animation end time for this segment.

e Min Rate: minimum allowed playrate.

e Max Rate: maximum allowed playrate.

e Total Root Motion: defines the distance along each axis.

@ Tip: make sure to close and open up the asset again to generate the total root motion!



The last properties we have left are:

e Use Linear: defines if the will use the linear approach. Set it to true for X.

e Use Animation: defines if the system will use original root motion. Useful for Baked Into Pose
animations.

At this point, our Motion Warping Asset is ready. Now let's move on to our character.



Step 2: Add Motion Warping Component

Add Motion Warping to your character:

E, v Motion Warping (Script)

e Scale Play Rate: whether we should modify original play rate.
¢ Play Animator: whether we should automatically play the animation.
e Blend Time: cross-fade blend in time for our animation.

o OnWarpStarted: called right before the interaction. Use it to disable collisions and other
systems.

e OnWarpEnded: called right after the interaction. Use it to enable the collision or movement
back.



Make sure to add a reference to the component in your code:

public class YourController : MonoBehaviour

i
//... /

private MotionWarping _warpingComponent;

Jfoe-

private void Start()
1

(fce-

_warpingComponent = GetComponent<MotionWarping>();

Il e-
i
¥

We will use it to check if it's possible to perform an interaction. Now let's move to the Warp
Provider section.



Step 3: Add a Warp Provider

Warp Providers are components, which implement IWarpProvider interface. Their role is quite
important in the system: they analyze the environment by runtime tracing, and then provide
desired target points for our character.

For example, Vault Component will trace forward to find an obstacle, and if it's vaultable, we can
perform our vaulting action.

Let's add a Vault Component to our character:

B Vault Component (Script)

Make sure to specify the asset we created in Y, Motion Warping Asset and vaulting settings. You
can use the ones right from the demo project.

Now we need to actually interact with the Vault Component in the code.

public class YourController : MonoBehaviour
1
i soe
private MotionWarping _warpingComponent;

i soe
i soe
private VaultComponent _vaultComponent;

i soe

private void Start()

i
erE
_warpingComponent = GetComponent<MotionWarping>();
erE

i

private void Update()

i
if (Input.GetKeyDown(KeyCode.F))
i
_warpingComponent.Interact(_vaultComponent);
¥
5



Interact method returns WarpInteractionResult struct:

public struct WarpInteractionResult

i
public WarpPoint[] Points; // target points in world space.
public MotionWarpingAsset Asset; // animation data asset.
public bool Success; // whether attempt was a success.

i

If you want to implement a custom Warp Provider, simlpy implement IWarpPointProvider interface
in your MonoBehaviour.



