
New Game Studio

Advanced Culling system manual

1

Table Of Contents

Contact And Support

When To Use

Dynamic Culling

 Idea

Quick Start

How It Works

Components Description

Static Culling

 Idea

 Quick Start

 How It Works

 Copmonents Description

Extra

Additive Scenes

MeshFusion Pro Compatibility

DC_ActivateNearObjects

2

Contact and Support

If you have any questions regarding the use of ACS or any of my other assets, feel

free to contact me through any convenient method:

Asset Store Page : https://assetstore.unity.com/publishers/9290

Discord : https://discord.gg/6EYUn9QhXF

Website : http://thenewgamestudio.com/

YouTube : https://www.youtube.com/@NewGameStud1o

Mail : andre-orsk@yandex.ru

https://discord.gg/6EYUn9QhXF

3

When To Use

Occlusion Culling is a powerful optimization tool that discards objects currently

occluded by other objects and not visible to the camera, even if the camera is facing

them.

The Advanced Culling System provides solutions for all potential scenarios. You can cull

both static and dynamic objects, with or without preprocessing. It supports culling not

only MeshRenderers and LODGroups but also lights and any other custom objects.

Please note that culling as an optimization approach is entirely useless in scenarios

where no objects overlap in the frame (e.g., top-down shooters).

The Advanced Culling System consists of two modules: Static and Dynamic Culling.

Static Culling Module allows preprocessing the visibility of objects and then simply

turning them on and off during runtime. This approach offers deep customization

options and generates less load during runtime. I recommend using this approach for

small to medium-sized scenes.

Dynamic Culling is a module that simplifies the optimization of both static and

dynamic objects without the need for preprocessing. This solution is perfect for large

and extremely large scenes.

4

Idea (Dynamic Culling)

The idea behind Dynamic Culling is quite simple. Rays are cast from the camera,

distributed across the screen in a specific sequence.

If a ray hits an object, that object is considered visible. If no rays hit the active object

within a specified period, the object is considered invisible and is turned off.

Despite the fact that raycasting is a resource-intensive operation, numerous

optimizations are used under the hood, including Burst and Jobs.

This approach allows for maximum minimization of CPU load and enables the use of

Dynamic Culling without preprocessing for scenes of any size.

5

Quick Start (Dynamic Culling)

1) Creating a Controller

The first thing you need to do is create an instance of Dynamic Culling. Click on Tools -

> NGSTools -> Advanced Culling System -> Dynamic.

Now, if you click on the Dynamic Culling instance, you will see a custom interface in

the inspector, simplifying the scene setup.

A detailed description of each field can be found in the "Components Description"

section.

2) Assigning Cameras

Next, you need to assign the cameras. Click on the "Cameras" dropdown and select

Assign Auto.

Alternatively, lock the inspector window by clicking the Lock icon in the upper right

corner. Then, select the cameras you want to add in the hierarchy and click Add

Selected.

3) Assigning MeshRenderers and LODGroups

To specify which objects the system should cull, you need to attach the

DC_SourceSettings component to objects with MeshRenderer or LODGroup.

You can do this manually or use the DC_Controller component interface.

Using the buttons from the dropdown menu, add the objects you want to cull. To

highlight the objects you have added to the system in the scene, enable the Draw

Gizmos flag.

4) Custom Objects

If you want to cull an object that doesn't have a MeshRenderer or LODGroup (e.g.,

Light or ParticleSystem), or if you want to customize the behavior for

onVisible/onInvisible events, use a custom SourceSettings.

6

To do this, attach the DC_SourceSettings component to the target object and set the

"Source Type" to "Custom."

Then, define the bounds for the object using the special Gizmos in the scene or the

"LocalBounds" field.

Next, assign the events that will be triggered when the object is visible or invisible to

the camera.

An example setup for a PointLight is shown below:

5) Baking

This step is optional for Dynamic Culling. The main idea is that during the Start

method call in DC_SourceSettings, some calculations are performed. These

calculations are then sent to the DC_Controller, which might cause a slight delay

when the scene starts. To perform these calculations in the editor for objects already

in the scene, you can press Bake in the DC_Controller. This way, the calculation step

during the Start call will be skipped.

7

How It Works (Dynamic Culling)

The starting point for the algorithm is the Awake method call in DC_Controller. In this

method, data is prepared, and the controller gets ready to handle requests.

For the DC_SourceSettings component, the entry point is the Start method call. This

method prepares the object for the culling process. First, it checks if the object has all

the necessary components (e.g., MeshRenderer). If the required components are

present, colliders are created for the object and placed in the ACSCulling layer. This

layer should appear automatically in Tags And Layers when you first click on

DC_Controller. It is isolated from interaction with other layers, so it should not affect

the current state of your scene.

Next, an instance of DC_CullingTarget (this class manages the visibility of the object)

is created, and all data is sent to DC_Controller. After sending the data, the

DC_SourceSettings component is destroyed and replaced by the

DC_CullingTargetObserver component. This component will monitor the state of the

GameObject. If the GameObject is destroyed, the Observer will remove its data from

DC_Controller.

For DC_Camera, initialization primarily occurs in the Start method. DC_Camera

receives a dictionary from DC_Controller where the key is the collider, and the value

is an instance of IHitable. Then, in the Update method, threads are launched to cast

rays. In the LateUpdate method, thread completion is awaited, and results are

processed. If a ray hits a collider, that collider is found in the dictionary, and OnHit() is

called on the IHitable instance associated with that collider.

A simplified schematic of the algorithm's operation is presented below :

8

9

Components Description (Dynamic Culling)

DC_Controller

 DrawGizmos (in play mode, if MergeInGroups is enabled): Visualizes the cells

into which the scene is divided. Objects within the same cell are considered a

group.

 ControllerID: The ID of the controller. All DC_SourceSettings with the same

ControllerID will be processed by this controller.

 ObjectsLifetime: How long an object will be considered visible (in seconds). If no

rays hit the object within this time, it is deemed invisible and deactivates.

 MergeInGroups: Whether to group nearby objects. This does not combine

objects but applies the state to a group of objects. If one object is visible, nearby

objects are also considered visible, and vice versa.

 CellSize (if MergeInGroups is enabled): The size of the cells into which the scene

is divided. This value should be considered abstract and adjusted

experimentally. Increasing this value can proportionally reduce RaysCount in

DC_Camera.

DC_SourceSettings

 ControllerID – The ID of the controller to which the current object belongs.

 SourceType – The type of object (SingleMesh, LODGroup, or Custom).

 CullingMethod (if SourceType is SingleMesh or LODGroup): The method used to

disable the object. If FullDisable, the object is completely disabled; if

KeepShadows, shadows from the object are retained.

 ConvexCollider - flag specifies whether the created MeshCollider should be

convex. This is useful when the source object has a rigidbody component. The

point is that Unity does not support non-convex MeshColliders together with

Rigidbody.

 LocalBounds (if SourceType is Custom): The bounds of the object. You can set

these in the inspector or via special Gizmos in the editor. Note that during the

object's preparation stage, bounds will be replaced with colliders.

 OnVisible (if SourceType is Custom): Events triggered when the object is visible

to the camera.

10

 OnInvisible (if SourceType is Custom): Events triggered when the object is not

visible.

DC_Camera

 RaysCount – The number of rays per frame.

 RaysDistribution – The algorithm used to distribute rays across the screen plane.

 AutoCheckChanges – If enabled, DC_Camera will additionally check if various

camera parameters (e.g., FOV) are changing. This can create additional load.

Alternatively, you can manually call the CameraSettingsChanged() method

when the camera settings change.

11

Idea (Static Culling)

The idea behind Static Culling is to pre-calculate which objects are visible from each

part of the scene and then, at runtime, simply toggle objects on or off based on the

player's position, without spending time on these calculations.

The solution I implemented involves dividing the scene into cells and calculating the

visibility of objects for each cell. At runtime, the current cell of the camera is

determined, and the relevant objects are activated.

To avoid artifacts where an object is visible but turned off, objects from neighboring

cells can also be considered.

12

Quick Start (Static Culling)

1) Create a Controller

Create a controller via the menu (Tools -> NGSTools -> AdvancedCullingSystem ->

Static).

2) Add Objects

Select the objects you want to cull. In the StaticCullingController, click “Open Selection

Tool”. Navigate through the tabs and use the buttons to add objects to the controller.

Note that you cannot add Custom objects through the Selection Tool. To assign custom

behavior to an object, attach the StaticCullingSource component to the object and set

SourceType to Custom (see the StaticCullingCustomTargets tutorial in the "Tutorials"

folder).

3) Partition the Scene Geometry

Divide the scene geometry so that each cell contains between 10 to 50 objects. Enable

Draw Gizmos and click Update to visualize how the scene is partitioned. It is

recommended not to use a Partition value greater than 16.

4) Define CameraZones

This section specifies the zones where the camera can be located. Click “Open

Selection Tool” in the Camera Zones section. In the opened window, click “Create

New”. Then select this zone in the hierarchy and use Gizmos to set the boundaries for

the CameraZone. You can also set the sizes in the Transform component.

CameraZones should cover the entire area where the camera can be during gameplay.

Specify the Cell Size. To see how the scene is partitioned, click Draw Gizmos and then

Update.

Note that rays will be cast from the center of each cell during baking to determine

object visibility. Therefore, if you set the Cell Size too large, some objects that should

13

be visible might be turned off. Conversely, if the Cell Size is too small, the baking

process may take too long.

5) Bake the Scene

If the scene takes too long to bake, click “Cancel” on the Progress Bar and set lower

values for Rays Per Unit and Max Rays Per Source. Then, try baking the scene again.

14

How It Works (Static Culling)

The Static Culling process is divided into two parts: scene baking in the editor and

runtime operation.

In the editor, a StaticCullingController is created and configured. Each object

participating in culling is assigned a StaticCullingSource component, where its

behavior is set. CameraZones are created, which are bounding boxes defining where

the camera can be and storing cells that contain visibility information for objects.

After setting up the scene, the StaticCullingController initiates the baking process. The

system identifies all objects with a StaticCullingSource component to include them in

culling and determine how to activate/deactivate them.

The algorithm iterates through all cells in the CameraZone, casting rays from the

center of each cell to determine object visibility. Instead of casting rays for each object,

which would be resource-intensive, the scene is partitioned into a tree structure. The

algorithm traverses the tree, calculating visibility for objects in visible leaf nodes and

recording data in the CameraZone cells.

Once baking is complete, the scene can be run. Each camera rendering the scene and

participating in culling should have a StaticCullingCamera component. During

gameplay, when the camera is within a CameraZone, it determines the current cell and

activates objects recorded in that cell.

15

Components Description (Static Culling)

StaticCullingController

 Step2. Partition – The depth of the scene partitioning tree.

 Step3.CellSize – The size of the CameraZone cells.

 Step4.RaysPerUnity – The relative number of rays per object. Note that closer

objects use fewer rays, while farther objects use more.

 Step4.MaxRaysPerSource – The maximum number of rays per object.

StaticCullingSource

 SourceType – The type of object (MeshRenderer, LODGroup, Light, Custom).

 CullingMethod (if MeshRenderer or LODGroup): Whether to disable the entire

object or keep shadows.

 IsOccluder – Disable if the object is transparent or does not block objects behind

it (e.g., for windows).

 OnVisible (for SourceType.Custom): Behavior when the object is visible.

 OnInvisible (for SourceType.Custom): Behavior when the object is not visible.

CameraZone

 Set through Gizmos in the Scene window, or you can simply adjust the Scale in

the Transform component.

StaticCullingCamera

 ShowFrustum – enable to visualise the FrustumCulling process. Objects outside

the frustum camera will be disabled. Note that these objects are not rendered

by Unity by default, but this option will help you visualise what will be rendered

in your scene.

 Draw Cells – visualises the CameraZone cells where the camera is currently

located.

 Tolerance – how many cells close to the camera should be included. The larger

the value - the more cells, the more objects will be visible.

16

Extra (Additive Scenes)

The example is from a discussion in the discord group.

Invite link : https://discord.gg/6EYUn9QhXF

In my example, I have three scenes. Main, Left, and Right. The main scene is loaded

first, then if the camera moves to the right then the right scene is loaded, and if the

camera moves to the left then the left scene is loaded, if the player leaves the trigger

then the scene is unloaded. Scenes can be loaded and unloaded in any order.

https://discord.gg/6EYUn9QhXF

17

18

The settings I applied to each scene :

1) Main. I added there DC_Controller with ID=0, and added camera to the controller.

2) Left. I added there DC_Controller with ID=1, added objects from the scene to this

controller and made sure that all DC_SourceSettings have ID=1.

3) Right. I added a DC_Controller with ID=2, added objects from the scene to this

controller and made sure that all DC_SourceSettings ID=2.

19

Extra (MeshFusion Pro Compatibility)

Although these two tools implement opposite approaches to optimisation,

sometimes working together can give a huge performance boost. There is currently an

alpha version of a script to make Dynamic Culling and MeshFusion Pro work together.

I plan to put it on the Asset Store in the future, but for now you can find the actual

version of the script in this discord channel named “Useful-Stuff” :

https://discord.gg/6EYUn9QhXF

The algorithm of work is as follows :

1) Create MeshFusionController(Tools->NGSTools->MeshFusion Pro)

2) Set MeshFusionSources through the controller or manually, as you like.

3) You need to attach this script to each MeshFusionSource. This can be done quickly.

In the "Hierarchy" window, type "t:MeshFusionSource" into the search, select all

objects and attach the script to them.

4) Create DynamicCullingController(Tools->NGSTools->AdvancedCullingSystem-

>Dynamic). You don't need to add objects to it, only cameras.

Now at runtime objects should be combined and culled 😊

https://discord.gg/6EYUn9QhXF

20

Extra (DC_ActivateNearObjects)

Sometimes it is useful to enable all objects within a certain radius of the camera, even

if they are overlapped by other objects.

This is a small script that can be found in the folder : AdvancedCullingSystem -> Core -

> Runtime -> Utils -> DC_ActivateNearObjects

Just attach this script to the camera

