Draw XXL

Getting Started Guide:
A step-by-step tutorial of how to use Draw XXL
2023-03-18

Thank you for purchasing Draw XXL. | hope it will be useful for you. This document explains the
first steps on how to get started with the new asset. It contains these three sections:

1. Getting Started
2. Drawing without code
3. Drawing with code

1. Getting Started

Before anything else:

If the asset doesn't work as expected, if you get stuck somewhere in the tutorial or if you have
guestions of any other kind:

Feel free to contact me. I'm glad to hear from you and are available via mail or Discord.

How to get started with the new asset? The first thing is (as with any other asset) to download and
install it via the package manager to your project.

Now it is worth mentioning that Draw XXL can be used with two different approaches: Via code
and via components (without any code). Both have its advantages and the next two tutorial
chapters explain each of them.

Independent of which way you choose there is one thing to know before anything gets drawn to
your screen: Draw XXL by default uses Unitys build in Debug.DrawLine() function under the hood.
That means you have to enable gizmo drawing for the desired view panels (Scene View and/or
Game View) in the Unity Editor. This is done by toggling the gizmo button in the top right corner of
the Editor panel:

o Game

Display1 =

https://docs.unity3d.com/ScriptReference/Debug.DrawLine.html
https://docs.unity3d.com/Manual/upm-ui-import.html
https://docs.unity3d.com/Manual/upm-ui-import.html
https://discord.gg/xrNFectxTC
mailto:drawxxl@symphonygames.net

2. Drawing without code

An easy way of using Draw XXL is via components. Draw XXL offers a range of drawer components
that can be added to Gameobijects just like you would add other basic components like a
Rigidbody or a Collider. Provided you have the Draw XXL asset imported to your project you will
find a new folder in the "Add component" menu named "Draw XXL".

In this folder you will find the new available components for beeing added with only one further
mouse click. The straightforward way of learning which options are available is to just browse
through this "Draw XXL" subfolder and have a look at the names of the components or add some
of them testwise to see what they do and which tweaking options they offer in the inspector.

1.658347

0
1

O

Line Drawer

3¢ I e B

3¢ 3 44

Here are some usage examples:

* Using a "Line Drawer" component to always see a GameObjects forward direction, also if it
is not selected:

* Adding a tag text to a GameObject via a "Tag Drawer":

* Display the world grid around a GameObject via a "Grid Visualizer":

* (Casting physics shapes through the scene with a "Physics Visualizer" and adjust the cast
direction with the transform handle:

The components have many options for tweaking and customization in the inspector. The options
are mostly self-explanatory or are explained via tooltips. For example the "Shape Drawer"
component hosts over 20 different shapes to choose from.

3. Drawing with code

The full potential and flexibility of Draw XXL is leveraged when drawing from code. Draw XXL offers
a static drawing library where you can call drawing functions from anywhere in your code without
initializing objects - as known from using Unitys Debug.DrawLine().

All you have to do to get started is declaring the usage of the Draw XXL namespace on top of your
scripts, like so:

void AFunction()

Jrawing with Unit
/Drawing with Draw

(continue on next page)

https://docs.unity3d.com/ScriptReference/Debug.DrawLine.html

Now there is the question how to find out which draw functions Draw XXL offers and what their
names and signatures are. This is where the APl documentation comes into play. The API
documentation is your starting point on the journey of learning the numerous available options.
To make navigation easier every category and every drawn object is visualized with an image. So
you can literally browse the APl documentation "by image" instead of the normal approach of "by
class and function names".

Let’s go through an example:
On the APl overview page you see different preview images that represent different shape

categories, like so:

Draw Text

https://www.symphonygames.net/drawxxldocumentation/subSites/navBarLevel/apiMain.html

Now say you want to draw a vector to visualize the forward direction of a GameObject. On the API
overview page you see that the category "Draw Basics" has a vector. After clicking on the Draw
Basics category another page with many images opens. The images represent all shapes that you
can draw inside the Draw Basics category. Again you can scroll up and down to see what drawing
options are available. While scrolling you see the wanted vector:

VectorFrom

VectorCircled

=}
=
=

=
=]
=

Let's choose "VectorFrom". After clicking on VectorFrom the actual description of the vector
(function name and signature) opens: (see next side)

Draw Basics.VectorFrom(...);

Draws a vector that is mounted at a starting peint (similarly to Unitys Ray).

Green parameters are required. Yellow parameters are optional, but have to be supplied in order.

DrawBasics.VectorFrom(...);

Code snippet names: drawVectorFrom and drawVectorFrom_func.

Parameters:
Type Parameter Name Description
Vector3 vectorStartPos The mounting point where the vector starts.

Vector3 vector
Color color
float lineWidth
string text

float conelength The length of the vector pointer cones. The parameter can be interpre
length or relative to the radius. The used interpretation is decided by {
conelength_interpretation_forStraightVectors.

bool pointerAtBothSides

bool flattenThickRoundLinelntoAmplitudePlane The amplitude plane is an imaginary plane into which a tag text protry
"customAmplitudeAndTextDir" parameter.

Vector3 customAmplitudeAndTextDir The default behaviour is that a global setting takes care of this, but foi
parameter.

bool addMNormalizedMarkingText This adds a little visualizer ring at the position where the vector would;

float —anlarasSmall Taurt TaThicklinTautQiza Thic anbhebhac affact if tha "teat" noramatar ic ucad Tha noreaal hahauis

We can see from the function description the name of the vector draw function and the expected
parameters. There are two mandatory parameters: "vectorStartPos" and "vector". These
mandatory parameters are colored green in the APl documentation. With that information we can
craft our first drawing call to the Draw XXL library, like so:

In the Unity Editor something like this should appear:

We already saw that green parameters from the function signature are mandatory. But what
about the yellow parameters? Yellow parameters are optional, but have to be supplied in the
correct order. They are used to further customize the drawn shape. Draw XXL makes heavy use of
such optional parameters. In many cases they can just be ignored (since they are only optional),
but in other cases it is good to have them and be able to tweak a drawn shape. Let's use some
optional parameters to tweak our vector.

The first optional parameter is "color". We can extend our code line like this:

“using

using DrawXXL;

-lpublic class

public void AFunction()

torFror

This should color our vector like so:

In busy environments drawn shapes are sometimes not well recognizable. An easy way to fix this is
to raise the line width of the vector. "lineWidth" is the next optional parameter. Our code is then
like so:

—lusing

using

And in the Editor it looks like this:

Finally we can add a text tag to the vector. "text" is the next parameter.

The result: A vector with text tag:

