Net.Like.Xue.Tokyo/Assets/Plugins/MeshCombineStudio/Scripts/Mesh/Voxelize.cs

411 lines
13 KiB
C#
Raw Normal View History

2024-11-03 16:42:23 +08:00
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System;
[ExecuteInEditMode]
public class Voxelize : MonoBehaviour
{
static readonly byte[] bits = new byte[] { 1, 2, 4, 8, 16, 32, 64, 128 };
static Dictionary<Mesh, VoxelizedMesh> voxelizedLookup = new Dictionary<Mesh, VoxelizedMesh>();
static List<float> intersectList = new List<float>();
const byte insideVoxel = 1;
const byte outsideVoxel = 2;
public int voxelizeLayer;
public float voxelResolution;
public bool voxelize;
public void Update()
{
if (voxelize)
{
voxelize = false;
VoxelizeMesh(transform, voxelResolution, voxelizeLayer);
}
}
public class VoxelizedMesh
{
public byte[,,] volume;
public Bounds bounds;
public Int3 voxels;
}
public struct Int3
{
public int x, y, z;
public Int3(int x, int y, int z)
{
this.x = x;
this.y = y;
this.z = z;
}
public static Int3 operator +(Int3 a, Int3 b)
{
Int3 v;
v.x = a.x + b.x;
v.y = a.y + b.y;
v.z = a.z + b.z;
return v;
}
public override string ToString()
{
return "(" + x + ", " + y + ", " + z + ")";
}
}
VoxelizedMesh VoxelizeMesh(Transform t, float voxelResolution, int voxelizeLayer)
{
// TODO ray cast from right / left and top/ down
Physics.queriesHitBackfaces = false;
MeshRenderer mr = t.GetComponent<MeshRenderer>();
if (mr == null) return null;
MeshFilter mf = t.GetComponent<MeshFilter>();
if (mf == null) return null;
Mesh mesh = mf.sharedMesh;
if (mesh == null) return null;
VoxelizedMesh vm = new VoxelizedMesh();
voxelizedLookup[mesh] = vm;
Transform oldParent = t.parent;
Vector3 oldPos = t.position;
Quaternion oldRot = t.rotation;
Vector3 oldScale = t.localScale;
t.parent = null;
t.position = Vector3.zero;
t.rotation = Quaternion.identity;
t.localScale = Vector3.one;
int oldLayer = t.gameObject.layer;
t.gameObject.layer = voxelizeLayer;
LayerMask voxelizeLayerMask = 1 << voxelizeLayer;
Bounds bounds = mr.bounds;
Vector3 size = bounds.size;
Int3 voxels = new Int3(Mathf.CeilToInt(size.x / voxelResolution), Mathf.CeilToInt(size.y / voxelResolution), Mathf.CeilToInt(size.z / voxelResolution));
voxels += new Int3(2, 2, 2);
int voxelsX = Mathf.CeilToInt(voxels.x / 8f);
vm.voxels = voxels;
size = new Vector3(voxels.x * voxelResolution, voxels.y * voxelResolution, voxels.z * voxelResolution);
bounds.size = size;
vm.bounds = bounds;
byte[,,] volume = new byte[voxelsX, voxels.y, voxels.z];
Ray ray = new Ray();
Ray ray2 = new Ray();
ray.direction = Vector3.forward;
ray2.direction = Vector3.back;
Vector3 pos = bounds.min;
Vector3 pos2 = pos;
pos2.z = bounds.max.z;
Debug.Log(PrintVector3(mr.bounds.size) + " new size " + PrintVector3(size) + " voxels " + voxels.ToString());
int voxelCount = 0;
Vector3 halfVoxel = Vector3.one * voxelResolution * 0.5f;
Vector3 minBoundsVoxel = pos + halfVoxel;
// voxels.y = 2;
try
{
for (int x = 0; x < voxels.x; x++)
{
int xGrid = x / 8;
byte bit = bits[x - (xGrid * 8)];
for (int y = 0; y < voxels.y; y++)
{
Vector3 origin = pos + new Vector3((x + 0.5f) * voxelResolution, (y + 0.5f) * voxelResolution, 0);
ray.origin = origin;
origin.z = pos2.z;
ray2.origin = origin;
intersectList.Clear();
MultiCast(ray, intersectList, 0.001f, size.z, voxelizeLayerMask);
MultiCast(ray2, intersectList, -0.001f, size.z, voxelizeLayerMask);
intersectList.Sort();
float half = (float)intersectList.Count / 2;
if (half != (int)half) { continue; }
// Debug.Log(hitInfos.Length + " " + hitInfos2.Length + " " + list.Count);
for (int i = 0; i < intersectList.Count; i += 2)
{
int z1 = Mathf.RoundToInt((intersectList[i] - pos.z) / voxelResolution);
int z2 = Mathf.RoundToInt((intersectList[i + 1] - pos.z) / voxelResolution);
for (int z = z1; z < z2; z++)
{
Vector3 voxelPos = new Vector3(x * voxelResolution, y * voxelResolution, z * voxelResolution) + minBoundsVoxel;
voxelPos = t.TransformPoint(voxelPos);
volume[xGrid, y, z] |= bit;
++voxelCount;
//if (!Physics.CheckBox(voxelPos, halfVoxel, Quaternion.identity, voxelizeLayerMask))
//{
// volume[xGrid, y, z] |= bit;
// ++voxelCount;
//}
}
}
}
}
}
catch (Exception e)
{
Debug.LogError(e.ToString());
}
Debug.Log(t.name + " voxels " + voxelCount);
vm.volume = volume;
t.gameObject.layer = oldLayer;
t.parent = oldParent;
t.position = oldPos;
t.rotation = oldRot;
t.localScale = oldScale;
return vm;
}
static string PrintVector3(Vector3 v)
{
return "(" + v.x + ", " + v.y + ", " + v.z + ")";
}
static void MultiCast(Ray ray, List<float> points, float hitOffset, float maxDistance, LayerMask voxelizeLayerMask)
{
RaycastHit hitInfo;
while (Physics.Raycast(ray, out hitInfo, maxDistance, voxelizeLayerMask))
{
points.Add(hitInfo.point.z);
Vector3 origin = ray.origin;
ray.origin = new Vector3(origin.x, origin.y, hitInfo.point.z + hitOffset);
}
}
static void Report(VoxelizedMesh vm, float voxelResolution)
{
int voxelResolutionX = (int)voxelResolution / 8;
for (int x = 0; x < voxelResolutionX; x++)
{
for (int y = 0; y < voxelResolution; y++)
{
for (int z = 0; z < voxelResolution; z++)
{
Debug.Log(vm.volume[x, y, z]);
}
}
}
}
//static public void RemoveOverlap(Transform t, MeshCombineJobManager.MeshCombineJob meshCombineJob, MeshCache.SubMeshCache newMeshCache, ref byte[] vertexIsInsideVoxels)
//{
// if (vertexIsInsideVoxels == null) vertexIsInsideVoxels = new byte[65534];
// float voxelResolution = meshCombineJob.meshCombiner.voxelResolution;
// int voxelizeLayer = meshCombineJob.meshCombiner.voxelizeLayer;
// Vector3[] newVertices = newMeshCache.vertices;
// int[] newTriangles = newMeshCache.triangles;
// List<MeshObject> meshObjects = meshCombineJob.meshObjectsHolder.meshObjects;
// int startIndex = meshCombineJob.startIndex;
// int endIndex = meshCombineJob.endIndex;
// for (int a = startIndex; a < endIndex; a++)
// {
// MeshObject meshObject = meshObjects[a];
// CachedGameObject cachedGO = meshObject.cachedGO;
// // Get array of intersections
// // Bounds bounds = cachedGO.mr.bounds;
// Collider[] colliders = null;//!! Physics.OverlapBox(bounds.center, bounds.extents, Quaternion.identity, meshCombineJob.meshCombiner.overlapLayerMask);
// if (colliders.Length == 0)
// {
// // Debug.Log("No overlap " + cachedGO.go.name);
// continue;
// }
// // Debug.Log("Overlaps " + colliders.Length);
// Transform[] colliderTs = new Transform[colliders.Length];
// VoxelizedMesh[] colliderVms = new VoxelizedMesh[colliders.Length];
// for (int i = 0; i < colliderVms.Length; i++)
// {
// colliderTs[i] = colliders[i].transform;
// if (colliderTs[i] == cachedGO.t) continue;
// MeshFilter mf = colliderTs[i].GetComponent<MeshFilter>();
// if (mf == null) continue;
// Mesh mesh = mf.sharedMesh;
// if (mesh == null) continue;
// voxelizedLookup.TryGetValue(mesh, out colliderVms[i]);
// if (colliderVms[i] == null) colliderVms[i] = VoxelizeMesh(colliderTs[i], voxelResolution, voxelizeLayer);
// // Debug.LogError("Couldn't find voxelized mesh for " + mo.m + " " + child.name);
// }
// float invVoxelResolution = 1 / voxelResolution;
// int startTriangleIndex = meshObject.startNewTriangleIndex;
// int endTriangleIndex = meshObject.newTriangleCount + startTriangleIndex;
// // Debug.Log("start " + startTriangleIndex + " end " + endTriangleIndex);
// for (int i = startTriangleIndex; i < endTriangleIndex; i += 3)
// {
// bool insideAllVoxels = true;
// for (int k = 0; k < 3; k++)
// {
// int vertexIndex = newTriangles[i + k];
// if (vertexIndex == -1) continue;
// byte isInsideVoxel = vertexIsInsideVoxels[vertexIndex];
// if (isInsideVoxel == 0)
// {
// bool inside = false;
// for (int j = 0; j < colliders.Length; j++)
// {
// Transform colliderT = colliderTs[j];
// VoxelizedMesh colliderVm = colliderVms[j];
// if (colliderVm == null) continue;
// Vector3 boundsMin = colliderVm.bounds.min;
// Vector3 vertPos = t.TransformPoint(newVertices[vertexIndex]);
// Vector3 pos = colliderT.InverseTransformPoint(vertPos) - boundsMin;
// Vector3 grid = new Vector3(pos.x * invVoxelResolution, pos.y * invVoxelResolution, pos.z * invVoxelResolution);
// if (grid.x < 0 || grid.x >= colliderVm.voxels.x || grid.y < 0 || grid.y >= colliderVm.voxels.y || grid.z < 0 || grid.z >= colliderVm.voxels.z) continue;
// int xGrid = (int)grid.x;
// int xxGrid = xGrid / 8;
// byte bit = bits[(xGrid - (xxGrid * 8))];
// if ((colliderVm.volume[xxGrid, (int)grid.y, (int)grid.z] & bit) == 0) continue;
// inside = true;
// break;
// }
// vertexIsInsideVoxels[vertexIndex] = isInsideVoxel = (inside ? insideVoxel : outsideVoxel);
// }
// if (isInsideVoxel == outsideVoxel)
// {
// insideAllVoxels = false;
// break;
// }
// }
// if (insideAllVoxels)
// {
// meshCombineJob.trianglesRemoved += 3;
// newTriangles[i] = -1;
// }
// }
// }
// Array.Clear(vertexIsInsideVoxels, 0, newMeshCache.vertexCount);
// // Debug.Log("Removed " + meshCombineJob.trianglesRemoved);
// newMeshCache.triangles = newTriangles;
//}
void OnDrawGizmos()
{
Gizmos.color = Color.red;
DrawVolume(transform, voxelResolution);
Gizmos.color = Color.white;
}
public void DrawVolume(Transform t, float voxelResolution)
{
MeshRenderer mr = t.GetComponent<MeshRenderer>();
if (mr == null) return;
MeshFilter mf = t.GetComponent<MeshFilter>();
if (mf == null) return;
Mesh m = mf.sharedMesh;
if (m == null) return;
VoxelizedMesh vm;
voxelizedLookup.TryGetValue(m, out vm);
if (vm == null) return;
byte[,,] volume = vm.volume;
if (volume == null) return;
Vector3 pos = vm.bounds.min;
Vector3 voxel = t.lossyScale * voxelResolution;
Vector3 halfVoxel = Vector3.one * voxelResolution * 0.5f;
Int3 voxels = vm.voxels;
// Debug.Log(voxels);
// Debug.Log(volume.Length);
Gizmos.DrawWireCube(mr.bounds.center, mr.bounds.size);
for (int x = 0; x < voxels.x; x++)
{
int xGrid = x / 8;
int bit = x - (xGrid * 8);
for (int y = 0; y < voxels.y; y++)
{
for (int z = 0; z < voxels.z; z++)
{
if ((volume[xGrid, y, z] & bits[bit]) > 0)
{
Vector3 localPos = new Vector3(pos.x + (x * voxelResolution), pos.y + (y * voxelResolution), pos.z + (z * voxelResolution)) + halfVoxel;
Gizmos.DrawWireCube(t.TransformPoint(localPos), voxel);
}
}
}
}
}
}