
Character Controller Pro 1.4.0
upgrade guide

Size interpolation (CharacterActor)

The built-in size interpolation functionality has been moved out from the CharacterActor component.
This means that the user is now responsible for that task. In order to make this task easy, the actor now
includes a few new methods dedicated to validate/interpolate size at the same time.

Here’s an example taken from NormalMovement.cs on how to implement size lerping for the character:

void Crouch(float dt)
{
 // First, define the size reference (a.k.a the pivot)
 CharacterActor.SizeReferenceType sizeReferenceType = CharacterActor.IsGrounded ?
 CharacterActor.SizeReferenceType.Bottom :
crouchParameters.notGroundedReference;

 // Validate the new size and interpolate towards the goal
 CharacterActor.CheckAndInterpolateHeight(
 CharacterActor.DefaultBodySize.y * crouchParameters.heightRatio,
 crouchParameters.sizeLerpSpeed * dt, sizeReferenceType);

 }

Animator checks (CharacterStateController)
In previous versions, CharacterStateController’s PreCharacterSimulation and
PostCharacterSimulation updates were supposed to be used for animation-related tasks (e.g. updating
Animator parameters). This is the reason why a hidden set of Animator “checks” (if statements) was
built-into the FSM. That being said, the user should be free to use these methods however he/she wants,
especially because those methods can be extremely helpful when defining custom behaviors.

The user is now responsible to do the proper “checks” if needed. Fortunately, the actor now includes a
method called IsAnimatorValid which does exactly that. Here’s a simple example taken from
NormalMovement.cs:

public override void PreCharacterSimulation(float dt)
{
 if (!CharacterActor.IsAnimatorValid())
 return;

 // ...
}

public override void PostCharacterSimulation(float dt)
{
 if (!CharacterActor.IsAnimatorValid())
 return;

 // ...
}

2D Rotation
In previous versions, a 2D character wasn’t capable of doing yaw rotation (around its “up” direction).
This was like this because of 2D Physics and the way the physics engine works internally. To
compensate for this, a fake forward direction called “forward2D” was created for the actor. In addition,
a Rotator2D component was added, whose only purpose was to follow this Forward vector and rotate
the “graphics” accordingly.

In 1.4.0, the Forward direction matches with ± transform.right. In other words, the actor is now
capable of doing yaw rotation (180 degrees) every time it needs to turn around.

Humanoids

2D humanoids characters don’t need to rely on Rotator2D for yaw rotation anymore. In fact, this
component does absolutely nothing for them. You can safely remove it if you want.

If smooth yaw interpolation (graphics rotation) is still required, you can add a RotationLerper (new
component).

Sprites

When dealing with sprite-based characters, especially those built with more than one sprite, rotation is
not something you’d want simply because the depth of the sprite will be completely messed up.
Elements from the back will appear on the front, and vice versa.

A fix to this problem is to tweak the sign of the localScale property of the transform.

The Rotator2D component will do this for you just like in previous versions. Even though there is not
need to change anything, it might be best to replace Rotator2D with the new SpriteRotator
component instead.

Actor rotation
In previous versions, a 180 degrees rotation could be made by inverting any of the orthogonal direction
(Forward, Right or Up):

CharacterActor.Forward *= -1f;

Even though this may look simple and effective, this was causing a lot of trouble for 2D. Since the
entire rotation system has been improved, 3D rotation also ended up affected (in a good way).

From now on, the correct way to rotate an actor is by applying a quaternion … Wait, don’t go 😱
away! The actor now includes many methods that will make this action super easy.

For example, this is how you make the character turn 180 degrees of yaw rotation (previous example):

// Turn 180 degrees
CharacterActor.TurnAround();

This is how you do yaw rotation by passing in a target forward direction:

// Look to the right
CharacterActor.SetYaw(CharacterActor.Right);

// Turn 180 degrees, same as TurnAround
CharacterActor.SetYaw(-CharacterActor.Forward);

Also you could specify pitch and roll rotations as well. There’s even the option to pass in a pivot as an
argument:

// Do pitch rotation using the actor center as a pivot
CharacterActor.RotatePitch(pitchValue, CharacterActor.Center);

In summary, now rotations are far more predictable.

Dynamic one way platforms (script)
The OneWayPlatform component has been renamed to DynamicOneWayPlatform . Since this
component was only renamed, the file references (id) will match, assuming that the meta files were not
modified. This means that you shouldn’t get any missing references in the scene. In case you get a
missing reference for whatever reason, please follow these simple steps:

1. Go to the missing component inspector.

2. Open the script field at the top

3. Select DynamicOneWayPlatform.cs as a replacement.

	Size interpolation (CharacterActor)
	Animator checks (CharacterStateController)
	2D Rotation
	Humanoids
	Sprites

	Actor rotation
	Dynamic one way platforms (script)

