
Page 1  

 

Serialized Dictionary 
Readme & User Guide 

Serialized Dictionary is designed to feel native to the Unity Editor while providing some additional 

functionaliy to speed up frequent workflows. 

Quick Start 

Use the class SerializedDictionary<,> in the Namespace AYellowpaper.SerializedCollections 

instead of the Dictionary<,> class to serialize your data. Use the SerializedDictionary Attribute 

for further customization. It follows the same Unity serialization rules as other Unity types. 

See the image below for example usage: 

 

User Guide 

Serialized Dictionary will serialized any Unity serializable type, including Unity Objects like 

transforms and ScriptableObjects. Furthermore, it allows to serialize duplicate keys and null values. 

The main purpose is to avoid accidental loss of data when you decide to change code or remove 

objects. The following color coding exists: 

- Red: the key is invalid, meaning either duplicate or null 

- Yellow: there are duplicate keys, but this is the one that’s used (it comes before the others) 

- Blue: the key was found in the search 

The Burger Menu in the top right is very important. It contains important options that will speed up 

your workflow. Most of the should be self explanatory. 

 

https://docs.unity3d.com/Manual/script-Serialization.html


Page 2  

 

Bulk Edit Operations 

To quickly modify lots of existing entries you can use and also create custom KeyListGenerators. 

E.g. for dictionaries that contain enums as keys, there’s a KeyListGenerator that will populate the 

dictionary with all values from the enum with one press of a button. 

1. Select “Populate Enum” with dictionary that has enum as key 

2. The dictionary is filled with all values from the enum 

 

 

 

 

 

Furthermore, there are populators for integers, which allow for custom input fields to modify the 

data that will be generated. 

  

In this case, Int Range will create keys between the range of 1 to 10. Before you Apply the generated 

values, you have the option to select between Add, Remove and Confine. They do the following: 

- Add will add the values if they don’t exist as keys yet 

- Remove will remove the given values 

- Cofine will add the values if they don’t exist as keys yet, and remove all keys that are not 

contained in the list of generated values 

As as example, assume you have keys 5 to 15 in your dictionary, and have chosen 1 to 10 in the 

generator. Given the following options, the resulting keys will be as follows: 

- Add will result in keys from 1 to 15, because 1 to 4 will be added 



Page 3  

 

- Remove will result in keys 11 to 15, because 5 to 9 will be removed 

- Confine will result in 1 to 10, because 1 to 4 will be added and 11 to 15 removed  

Creating Bulk Edit Operations 

Some KeyListGenerators exist for enums and ints. But you might want to add your own custom Key 

Generators. This is easily done by creating a new class that inherits from KeyListGenerator and 

adding the KeyListGenerator Attribute to it. See the image for the int generator example: 

 


